
Group-Theoretic Methods for  
Parallel Computation of Convolution 

 
Olga V. Klimova 

Institute of Engineering Science 
Ural Branch of the Russian Academy of Science 

91 Pervomayskaya str., Ekaterinburg, 620219, Russia 
Fax: (+7) 3432 –745-330 

e-mail: ovs@ imach.uran.ru 
 

1. Introduction 
Convolution decomposition allowed creation of fast  computation algorithms 
within the  scope of sequential processing [1,2]. The proposed methods of 
convolution decomposition were aimed at the resolution of specific problems 
standing in the way of creating such algorithms. The methods consist in the 
determination of correspondence between the one-dimensional and two-(multi-) 
dimensional convolutions on the basis of the chinese remainder theorem or by 
increasing the initial convolution length. Thus fast algorithms using number 
theoretic transforms (NTT) and efficient algorithms for calculating short 
convolutions were created [3,4]. However, in one case, the decomposition 
methods made the algorithm structure redundant, whereas in other case, they 
imposed restrictions on  the decomposition parameters, which need to be 
mutually prime numbers. 

Parallel processing requires structural flexibility of algorithms, therefore 
the decomposition methods primordially characterized by redundancy and 
restrictions imposed on the parameters are not effective. However, parallel 
convolution algorithms are also to be created through decomposition. Moreover, 
the methods for parallel convolution decomposition must both solve the 
problems of developing fast algorithms and make them structurally 
nonredundant and parametrically adjustable to any degree of parallelism. Such 
methods were created on the basis of the group-theoretic approach to 
convolution decomposition [5]. Based on this approach, algorithms using NTT 
were considered in [6]. The group-theoretic approach proposed is complex in 
character, that is, it is orientated towards the decomposition of a number of basic 
functions of digital signal processing  convolution, correlation, discrete Fourier 
transform (DFT). The basic decomposition transforms of DFT and convolution 
within the scope of the group-theoretic approach were presented in [7]. The 
problem of DFT group-theoretic decomposition and DFT parallel computation 
were studied in detail in [8, 9]. This integrated approach has allowed one to 
develop a number of methods for parallel convolution computation based on the 
group-theoretic decomposition of DFT and convolution. These methods offer 
various fast parallel convolution algorithms. A set of such methods demonstrates 



a unified decomposition approach to the development of these algorithms. The 
objective of this paper is to develop a collection of methods for the parallel 
computation of convolution by generalizing and extending the results of the 
group-theoretic decomposition  of DFT and convolution. 

 
2. The method of group-theoretic decomposition of DFT 
The method is not connected with the decomposition of the convolution function  
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as it is primordially based on the transforms (DFT, NTT) displaying the cyclic 
convolution property [4,10,11]. Then the initial model of calculation )t(C  is 
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Equation (2.3) defines DFT when N/i2
N eW  . The main body of computation 

is connected with the transition to the frequency domain and backwards. The 
proposed method of parallel computation of convolution is based on the 
realization of this transition over the fast parallel algorithms produced by the 
group-theoretic decomposition of DFT. There are two ways of realizing this 
decomposition, which correspond to two methods of DFT decomposition. The 
decomposition results in the decomposition forms of DFT representation. These 
DFT forms allow one to create fast parallel algorithms flexibly adjusted by 
parameters to different lengths and dimensions of signals and to different 
degrees and modes of parallelizm. The characteristics of the decomposition 
methods and the corresponding algorithms were described in [8, 9]. One of the 
important features of the group-theoretic decomposition is its ability to offer the  
unity of the structure of the algorithms created by different decomposition 
methods as well as the  unity of algorithm structure for direct and inverse DFT 
computation. 
The latter is important for the realization of the present method, when  one and 
the same algorithm (with an accuracy of phase factors) is both for direct and 
inverse DFT. To complete the presentation of the method, we demonstrate some 
group-theoretic decomposition forms of DFT. The structural unity of the 
algorithms corresponding to them allows one to present only one of these forms. 
First we interpret some of the notions and symbols using in the decomposition 
form of DFT. The cyclic convolution (2.1) and DFT (2.3) are defined on the 
group   ,,ZH NN   of order N . The group is interpreted as the interval  



 1N,0N   with the operation of  modulo N  addition + (or subtraction -) 
given on it. Suppose k21 h...hhN  . Then any numbers  1N,0,t   can 
be represented unambiguously as 
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The group-theoretic decomposition of DFT enables one to obtain the following 
form of DFT representation: 
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The use of equation (2.6) in  the time  frequency transition has allowed us to 
construct  fast parallel algorithms for convolution computation. Similar 
algorithms have been developed on the basis of NTT. 
 
3. The method of group-theoretic decomposition of signal 
The methods of parallel computation of convolution presented below are  based 
on group-theoretic decomposition of convolution (2.1). The basic decomposition 
transforms of convolution resulting in new forms of convolution representation 
were described in [5-7]. These decomposition forms define the methods of 
parallel  computation of convolution. Before presenting these decomposition 
forms, we interpret their principal elements used in the decomposition. We 
represent any number   1N,0q   in the form of equation (2.4) and define the 
subtraction (shift) operation        on N   as 
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The addition qt   is defined similarly. The «» and «  » operations define 
some group  ,,H N    on the  set N  identifiable with the direct product 
of the cyclic groups  
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that is, it can be considered that   ,,Z NN    owing to their isomorphism. 
On the interval N  we study the  cyclic convolution 
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given on the group NZ  . Now the following symbols can be introduced 
                              k1k32k1kk1 hh...ht...httj   ,    
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Let us  next use the functions 
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The functions (3.2) and (3.3) possess the following properties: 
- equality of shifts 
                                                  )qt(x)qt(x **  ;                                   (3.4) 
- composition property  
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The group-theoretic decomposition of convolution (2.1) based on the 
decomposition (3.5) of the signal )t(x  allows one to obtain the following form 
of convolution representation: 
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Equation (3.6) gives a formalized description of the method of parallel 
computation of convolution under study. The main characteristic feature of the 
method is the presence of 1N  independent computation processes for the  
functions )t(C

1j . The functions )t(C
1j  are equivalent on the groups with 

different structures, but the same order N : 
                                        

1111 NhNhN ZZ,ZZ,Z  , 
due to their independence from the group shift operation. This independence 
stems from the property (3.4) of the functions (3.2), (3.3). Thus the 
decomposition (3.5) of the signal )t(x  has enabled the relations between the 
convolutions (2.1) and (3.1) to be established . Owing to the structure of the 
signals defining the functions )t(C

1j ,  fast parallel computational algorithms 
for )t(C  based on different fast orthogonal transforms given on the group 

11 Nh ZZ   have been constructed within the scope of the method. 
 



4. The method of group-theoretic decomposition of convolutions 
Equation (3.6) can be considered as the basic decompositional form of the 
convolution (2.1) based on the functions )t(C

1j . They can in turn be reduced to 
the following parallel form of representation: 
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where  
   1N,0m,p,1h,0q,t,mNqq,pNtt 111111111111  . 

In the derivation of  eqn. (4.1),  the property (3.4) of the functions )t(x*
j1  was 

used,  which results in the equality between 1p  and 1m . Thus the values of any 
function )t(C

1j  are formed by parallel  computation of 1N  convolutions 

)pNt(C)Nt(C 111j11pj 111
  of length 1h of the signals )Nt(x 11

*
j1  and 

)Nq(y)jpNq(y 11pj1111 11 . The method of parallel computation of 
convolution (2.1) is based on the group-theoretic decomposition (4.1) of the 
convolutions )t(C

1j . The corresponding form of representing convolution (2.1) 
based on eqn. (3.6) is 
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The fast parallel algorithms of convolution  using efficient ways of computation 
of   short  convolutions   of   length  1h  have been developed on the basis of  
eqn. (4.2). 
 
5. The group-theoretic method of  reducing one-dimensional 

convolution to pseudo-two-dimensional one 
Equation (4.2), hereinafter referred to as group-theoretic (GT-form), is the basis 
of transforms giving rise to the present method. Its form is almost similar to 
two-dimensional convolution: 
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Eqn. (4.2) and (5.1) differ in the character of group  shift operations: 
                                          )jp( 11   и )jp( 11 . 
In equation (4.2) this shift is performed on the group NZ  of the order N , though 
in equation (5.1) it is performed on the group 

1NZ  of the order 1N . By 
analyzing  the  function  )jpNq(y 1111    from  equation  (4.2), we can 
notice that 
- for 11 pj  ,  ))jp(Nq(y)jpNq(y 11111111  ; 
- for ))jp(N)1q((y)jpNq(y,pj 1111111111  . 



Then the GT - form (4.2) gives rise to a form different from the two-dimensional 
one (5.1) by one position shifts )1q( 1   of  )1N( 1   sequences )Nq(y 11pj 11  
given on the group 

1hZ .  The above-mentioned sequences are located at the 
points 11 pj   in the computation of convolution  along the coordinate 1p . This 
form of one-dimensional convolution (2.1) is referred to as pseudo-two-
dimensional form. The corresponding method of parallel computation of 
convolution allows creation of fast parallel algorithms realizing the computation 
of two-dimensional convolution and the correction of the values of its samples. 
The recurrent application of this method makes it possible to use the Walsh   
transform [12] for the computation of convolution (2.1). 
 
6. Conclusion 
The methods of parallel computation of convolution illustrate great potentialities 
of the group-theoretic decomposition approach in the  creation of effective 
parallel algorithms possessing the following properties: 
- decomposition nonredundancy; 
- absence of  restrictions imposed on the decomposition parameters; 
- parametric adjustability to any degree of parallelism; 
- pertinence to the class of fast algorithms. 
The unified  approach to the development of a variety of such algorithms 
provides the unity of their common structure, multivariantness  and succession 
of corresponding computation solutions. The possibility of creating such 
algorithms allows one to establish optimal relations between the algorithm and 
the architecture within parallel processing. 
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